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Abstract 
 

 

It is widely known the problem of corrosion that affects the steel bars used in reinforced concrete. For 
example, in 2012 India spent 70.3 billion dollars with a GDP of 1670 billion on structures that suffered 
corrosion, in other words 4.2% of GDP (Gerhardus et al 2016). Also, the cost of corrosion in USA in 2016 
was 2.5 trillion dollars (nace.org/publications/Cost-of-Corrosion-Study / G2MT). For this reason, it is 
necessary to continue making studies related to mitigation of corrosion. Recently, the basalt bars have 
appeared as an alternative reinforcement to steel bars in concrete. The advantage of basalt bars over the steel 
bars lies in that they do not suffer corrosion. These basalt bars are the fusion of basalt fibers from the rock 
and resin. The aim of this paper is to analyze the behavior of a concrete beam cross section, reinforced with 
basalt bars through the moment-curvature diagram. Then, the comparison of three moment-curvature 
diagrams obtained with different constitutive models available for concrete is presented. The constitutive 
models selected for the purposes of this paper have been proposed by the American Concrete Institute 
(ACI), the European Concrete Committee (CEB) and Kent and Park, for the calculation of the nominal 
bending moment. 
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Introduction 
 

Commonly, the reinforcement used when designing concrete sections is steel rebars. However, as 
environmental conditions affect these materials, alternative materials are needed that offer comparative 
advantages, such as fiber reinforced polymers (FRP). The design of beams reinforced with these bars is governed 
by the ACI 440 regulation, which also includes some recommendations to be applied during construction. This 
paper presents an analysis of these elements through the moment-curvature diagrams, using three constitutive 
concrete models that overcome the limitations of the compression block of the ACI with respect to the 
elaboration of the diagram. 
 

1. Reinforced Polymers with Fibers (FRP)  
 

An FRP bar is a set of filaments or fibers that are in a binder matrix of polymeric resin and are classified 
according to the type of fiber they have, such as glass (GFRP), carbon (CFRP), basalt (BFRP) or aramid (AFRP) 
according to Gremel, D (2003). Among the main advantages that can be noted of FRP bars compared to steel bars 
are: Anisotropic material, high resistance to corrosion, non-magnetic, high strength / specific weight, lower 
maintenance cost, repair and / or structural rehabilitation (Quake Wrap 2017). Figure 1 shows the constitutive 
diagrams of the steel and some FRP bars.  
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It can be noticed that the deformations reached in the FRP bars are smaller than in the steel and that its 

stress-strain relation is totally linear without the presence of a yield platform which could lead to the possibility of 
fragile failure. However, from the values shown in Table 1, it can be noted that the ultimate stress for the FRP bars 
are greater than for the steel, which will mean a greater reserve of resistance. 
 

Table 1.-Mechanical properties of FRP bars and steel (Adapted from ACI 440, 2006) 
 

Material Last Effort 
(MPa) 

Elastic Modulus (GPa) Deformation of failure (%) 

GFRP 483-1600 35-51 1.2-3.1 

CFRP 600-3690 120-580 0.5-1.7 

AFRP 1720-2540 41-125 1.9-4.4 

STEEL 483-690 200 6-12 
 
 

 
 
 

Fig. 1.-Graphs stress vs. Strain of FRP and Steel bars (Adapted from Prince Engineering 2011) 
 

2. Constitutive Models of the Concrete 
 

A constitutive model is a diagram that aims to describe the stress-strain behavior of a given material. The 
constitutive models selected for the purposes of this article have been those proposed by the American Concrete 
Institute (ACI), the European Concrete Committee (CEB) and Kent and Park, referred to the calculation of the 
nominal bending moment. However, only the last two will be used for the moment-curvature diagram and the first 
will be used taking into account certain observations.  
 

2.1 American Concrete Institute (ACI) 
 

In this model, the actual stress diagram in the concrete is replaced by an equivalent compression block that is 
defined by two parameters: "α" and "β". The first parameter is the ratio of the stress in the block to the resistance in 
compression of the concrete f'c; and the second, the relation between the depth of the compression block of stresses 
with respect to the neutral axis of the section. A value of 0.85 is usually accepted for α, while the values adopted for β 
are dependent on the value of the compressive strength of the concrete (De la Fuente 2007). This model facilitates the 
calculation of the nominal moment. 

 
 
 

 
 

Fig. 2 –Rectangular equivalent block (Adapted from De la Fuente 2007) 
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2.2  European Concrete Committee (CEB) 
 

This model is used in Europe, corresponds to a perfectly plastic inelastic model. The stress diagram consists 
of a second degree parabolic curve with the final vertex corresponding to a concrete deformation equal to 0.002; and 
then, a straight line whose end corresponds to a concrete deformation equal to 0.0035. For both vertices, the other 
component is equal to the compressive strength of the concrete reduced to a value of 0.85 f'c (Ottazzi, 2017). 

 
 

Fig. 3–Parabolic-rectangle model CEB (Adapted from Ottazzi, 2017) 
2.3  Kent and Park  
  

This model has among its parameters the volumetric volume of confinement, so it can represent the behavior 
of concrete with or without confinement. It has an initial parabolic zone that reaches the compressive strength of the 
concrete f'c at a unit strain equal to 0.002, then follows a linear decreasing zone until it loses capacity by 80%, whose 
deformation is defined corresponding to a loss of 50% capacity. When it comes to confined concrete, after losing 
capacity by 80%, the model considers a constant remaining capacity valid until exhaustion (Chang 2015).  
 

 
 

Fig. 4 – Parabolic-lineal model Kent-Park (Chang 2015) 
 

The deformation when losing 50% capacity in an unconfined concrete (ε50u) is defined by Eq.[1], where f’c is 
expressed in psi. On the other hand, in the case of confined concrete, the deformation increases up to a value of ε50c 
by the presence of stirrups (ε50h) which is defined by Eq. [2], ρ is the volumetric quantity of confining stirrups as a 
function of the confined core, b is the smallest dimension of the confined core and s is the spacing between stirrups. 

  
ε50u= (3+ 0.002 f’c)/ (f’c-1000)   [1] 

 
ε50h=0.75 ρ (b/s)0.5       [2] 

 

3. Calculation Nominal Moment 
 

Actually, the Strength Design is used, which is governed by the premise "Design Resistance ≥ Required 
Resistance" where the Design Resistance is the nominal resistance reduced by the factor φ corresponding to the 
required internal force and the Required Resistance comes from increased loads by factors indicated in ACI (Ottazzi 
2017). Then, the calculation of the nominal moment for the 3 constituent models presented in the previous section is 
presented.   

This will be done (Fig. 5) for a rectangular section of 25x50cm with reinforcement of 3 bars of 3/4" 

( =8.52 cm2), the concrete has a compression strength f’c=210 kg/cm2, the elastic module of the reinforcement is 

=570000 kg/cm2 and the ultimate tensile stress in the reinforcement is ffu=12000 kg/cm2 
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Fig. 5– Beam section considered for calculations (Own source) 

 

3.1 American Concrete Institute (ACI) 
 

The nominal moment calculation according to the ACI 440.1R is performed according to the value of the 

reinforcement ratio ( ), if it is greater or less than the ratio of balanced reinforcement ( ). The equations to find 

the value of the ratios are presented in [3] and [4]; then, the nominal moment calculation is presented according to the 
criteria mentioned above: 
 

                                                  [3] 

                   [4] 

 

Nominal Moment for ΡF >ΡFB 
 

ACI proposes, first, to calculate the reinforcement stress ( ), which must be less than the last reinforcement 

stress. Through the equilibrium of forces and the compatibility of deformations, expressions [5] to [8] can be 
obtained. The difference is that one takes into account the reinforcement area, while the other expression is based on 
the ratio of reinforcement whose calculation is expressed in Eq. [3] 
 

    [5] 

  [6] 

Where:                   [7] 

It also applies:                              [8] 

Nominal Moment for ΡF <ΡFB 
In this case, the failure of the element starts with the breaking of the FRP reinforcement, so an equivalence 

must be established so that the concrete stress corresponds to the deformation that has been reached, which probably 
does not coincide with the maximum deformation that concrete can reach (0.003). When the unknowns are the 

deformation of the concrete at the failure ( ), the depth of the neutral axis (c), the reduction factor for the block (α) 

and the ratio of the depth of the block with respect to the neutral axis (β), the ACI440 proposes that the nominal 
moment be approximately eq. [9]: 

      [9] 

Although it does not influence the calculation of the nominal moment, it may be interesting to mention that the 
resistance reduction factor ϕ  varies according to the reinforcement ratio used as shown in Figure 6: 
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Fig. 6– Variation of the value of ϕ with the amount of reinforcement (ACI 440, 2006) 
 

Considering a ultimate deformation of concrete ( ) of 0.003, which is the one corresponding to the idealization of 

the compression block, and applying Eq. [3] and [4] we have: . The condition ρf>ρfb 

is fulfilled, so that from Eq. (5), (7) and (6) it may be obtained:  ;  ; 

 
 

3.2 European Concrete Committee (CEB) 
 

In this case, the calculation of the nominal moment is based on the compatibility of deformations, stress-
strain relation and equilibrium in the section (Fig. 7). It is important to point out that it will not be sought to verify the 
yield condition, as it is done when the reinforcement is steel, since the stress-strain relation for the FRP bars is linear 
elastic for any deformation up to the failure. 

 
 

Fig. 7– Deformations in the section of the beam (Own source) 
 

It will be necessary to take into account during the calculations, the difference of equations in the shape of 
the concrete curve since the initial part is parabolic and the final part is linear. The equations obtained will be given by 
Eq. [10] to [18]: 

 

Compatibility:       [10] 

 

Stress-strain relations:                             [11] 

Balance of the section:  [12]                                                                        

   [13] 

                                                                               [14] 

Parabolic part length:                               [15] 

Compression centroid:     [16] 

Lever arm:                                                          [17] 
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Nominal moment:                                    [18] 
 

If Eq. (12) is replaced in Eq. (11) and then placed next to Eq. (13) in Eq. (14), the value of c can be obtained. 
 

 

With the value of c, we can obtain the length of the parabolic part by means of Eq. (15) and then replace it in Eq. (16) 
and find the centroid of the compressions in the concrete. With Eq. (17), the lever arm of either force can be 
determined, either the tension in the reinforcement or the compression in the concrete. Finally, Eq. (10), (11) and (18) 
are used to find the nominal moment. 

 

 

 

 

 
3.3   Kent and Park   
 

In this case, the process is similar to that presented in the calculation of the nominal moment with the 
constitutive diagram proposed by the CEB. The values to be obtained are that the final deformation in the concrete 
that reaches a value of 0.004 and that the final part is a straight line with a fall of 0.15 f'c which triggers that the last 
compression stress considered for concrete is 0.85f 'c; therefore, the parts will be parabolic and trapezoidal. The 
equations are conserved except those in which the geometry of the constitutive diagram influences, such as Eq. (13) 
and (16), of which their corrections will be presented next in [19], [20] and [21]: 
 

[19] 

     [20] 

     [21] 

Following the process presented above, we can find: 

;  

 

4. Moment-Curvature Diagram  
 

The moment-curvature diagram is a way to describe the behavior of a section of concrete with 
reinforcement. The points commonly used for the preparation of this diagram are those corresponding to the cracking 
moment of the section (Mcr), start of the yield of the reinforcement (My) and the maximum capacity of the section 
(Mmax). Nevertheless, FRP bars do not have a yield platform. For this reason, in the present case, the moment-
curvature diagram omits the point corresponding to the start of yielding of the reinforcement (My). 
 

The calculation of the moments before and immediately after the cracking with the selected constitutive 
models are carried out under the same process; also the following hypotheses are considered (Ottazzi 2017): 1) The 
flat sections remain flat; 2) The behavior of concrete, under service loads, in tension and compression has an elastic 
linear behavior, this approach is conservative for compression stress up to 0.4 or 0.5 of f'c; 3) There is no possibility 
of a failure occurring prematurely by shear or by lateral buckling; and 4) The bond between the concrete and the bars 

FRP is perfect. The procedure to calculate the moment before the cracking ( , with the contribution of the 

concrete and the FRP bars, is done using the moment of inertia of the transformed section ( ) and the flexural 

tensile strength of concrete ( ), which is given in ec. [22] and [23]: 
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     [22] 

      [23] 

The calculation of stress in the concrete can be done based on the bending moment (M), to the position of the neutral 
axis (c) and to the moment of inertia of the transformed section. In turn, with this value we can calculate the 
curvature reached, see Eq. [24] and [25]. 

  [24]     [25] 

 

The results of the moment-curvature calculation are presented, moments before the Cracking (AF) and 
instants after cracking (DF) are obtained for section, AF transformed cracked and for DF, of the cracked transformed 
section ignoring the concrete in tension; for both cases, the process of calculating the other intermediate variables is 
common: M is obtained through Eq. (23); c is obtained from the static moment sum with respect to the upper edge; is 
calculated using Eq. (24) and to find Eq. (25) is used. The results obtained for the 3 constituent models that are 
common to all, are shown in Table 2, the reason is that they are governed by the hypothesis that the concrete 
behavior will be linear as long as the stress is less than 0.5f'c. 
 

Table 2 –Values obtained from the calculation for before and after the cracking common to the 3 
constitutive models of concrete 

 

      
AF 525728 61.2 25.10 292.2 0.0005 

DF 35631 63.7 5.83 1041.5 0.0082 
 

4.1 Moment-Curvature of the beam with reinforcing steel. 
 

For a matter of interest, the procedure for the moment curvature relation has been developed for the same 
cross section of the beam, using reinforced steel bars. The constitutive model proposed by the European Concrete 
Committee was used (CEB). For the calculation of the necessary points for the construction of the moment-curvature 
diagram, the previously explained procedures were followed. Nevertheless, due to the fact that the steel has a yield 
zone, an additional calculation was made corresponding to the moment and curvature at the beginning of yield of the 
steel. The calculation of moment of yielding was performed based on deformation compatibility, stress-strain 
relationship. It will be necessary to take into account during the calculations the different equations in the shape of the 
curve of the concrete, since the initial part is parabolic, and the final part is linear. The equations obtained will be 
those shown [26] to [33]: 
 

● Compression in concrete:               
                 [26] 

                    [27] 

 

                    [28] 

 

● Result of compressions in the concrete: 

  [29] 

 

● Resultant from steel tractions:                            [30] 

● Compatibility:                                                    [31] 

● Creep curve and creep moment: 

                       [32] 

     [33] 

 
The results obtained by solving Eq. [26] through Eq. [33] are illustrated in figs. 8 and 9: 
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Fig. 8- Moment-Curvature diagram for the beam with reinforcing steel (Own image) 
 

 
 

Fig. 9- Moment-Curvature diagram of beams reinforced with FRP and steel (Own image) 
 

The 3 moment-curvature diagrams elaborated with FRP reinforcement do not present a significant 
difference. This is logical because the first two break points were calculated under the hypothesis of a linear behavior 
of the stress in the concrete, so got the same values. As for the final point, it is the one that corresponds to the 
moment nominal value, all these values do not differ considerably, being the value of ACI more conservative. In 
addition, in the moment-curvature diagram with steel reinforcement, we have 3 breakpoints, from the second one to 
the last one the line is practically a constant value. 

 

5. Ductility of the Reinforced Beam with Steel and FRP 
 

The ductility of a material is defined as the amount of maximum plastic deformation that is able to support a 
material before breaking. The equation to obtain this ductility is presented in Eq. [34]. 

 [34] 

First, the important points of the moment-curvature diagram are presented of the beam with steel 
reinforcements, to obtain the ductility of the element. The steel presents a point at which yield begins, which is 

fundamental to perform this calculation. Applying Eq. [34] with the data from table 3, we obtain µ = 10.72. Second, 
or the beam reinforced with FRP bars, the ductility was calculated by establishing that the curvature of yield is 
obtained with similar values for steel. This assumption is not correct since the FRP bars do not have a yield platform, 
so this is somewhat an indicator adopted to obtain the curvature ductility and thus, establish some relevant 
conclusions regarding this (Table 4). 
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Table 3 – Breaking points of the bending moment for the beam with reinforcing steel 
 

BEAM WITH STEEL 

 Moment (kN.m) Curvature (1/m) 

Before cracking 64.5 0.0005 

After cracking 67.0 0.0029 

Start creep 143.5 0.0064 

Nominal 150.6 0.0685 
 

Table 4 –Breaking points of the bending moment for the FRP beam reinforcement beam 
 

FRP 

 Moment (kN.m) Curvature (1/m) 

Before cracking 61.2 0.0005 

Assumed for point of 
creep in reinforcement 

63.1 0.0064 

After cracking 63.7 0.0082 

Nominal 288.9 0.0416 
 

Applying Eq. (34) with the data that can be extracted from table 6, we obtain:  
 

6. Conclusions 
 

The nominal moments, the maximum peaks in the moment-curvature diagram for FRP bars, are quite similar 
to each other, being the value calculated with the equations from the ACI the most conservative one. The last 
deformations considered in the concrete vary according to the adopted constitutive model and this must be taken into 
account during the calculations. In addition, by superimposing the moment-curvature diagrams the differences 
between them is not significant. The lack of a yield platform for FRP bars makes it impossible to find a moment of 
yielding and its corresponding curvature. In order to quantitatively assess the ductility, the assumption was made to 
adopt the yield of steel as if it also occurred in the FRP bars. A lower curvature ductility was obtained in this 
case. These results are dependent on factors such as the section analyzed, as there is less ductility, the possibility of a 
fragile failure grows. 
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