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Abstract 
 
 

This paper presents a method for approaching three dimensional models for n dimensional hypercubes through 
polar zonohedra, which – under certain conditions – constitute orthographic isometric projections of such 
hypercubes. The paper then goes on to present certain sections of the solids in question and the creation of 
tessellations on the plane. In order to design the zonohedra, use was made of the Rhino program, which 
combined with the Grasshopper routine allows for the parametric control of the geometric structure of the 
solid. In other words, it shows – through the proper manipulation of the design algorithm – how zonohedra are 
produced, constituting projections of higher dimensional hypercube spaces in three dimensional space. 
Subsequently, the sections of the zonohedra create planar tessellations on the planes, which change depending 
on how the n degree of the zonohedron changes. This results in a table that juxtaposes projections of 
hypercubes in three dimensional space and tessellations of a plane, some of which are already known, thus 
suggesting some sort of correlation between them. This study serves as a formulation of the architectural 
question surrounding the concept of the projection of polyhedra in general dimension on a plane and suggests 
an approach involving the parametric control of structures, thus bypassing – to a certain degree – the need for 
supervision. It also provides an answer to the general question regarding the contemporary role of geometry in 
the education of architects, which focuses mainly on the gradual detachment of the architect from the need to 
constantly monitor the produced form. The study presented in this paper is based on the post-doc research 
made by Nikos Kourniatis under the research funding program Thalis. Ioannis Emiris was the supervisor 
professor.  
 

 

 
From platonic solids to polar zonohedra 
 

The Minkowski sum of n vectors in space is a convex polyhedron 3 with n(n 1) faces, where n is 
the number of the different directions of the vectors4. If the vectors are equal in size, then the faces of the 
convex polyhedron will be shaped as rhombi and the polyhedron will constitute an equilateral 
zonohedron.  

                                                             
1 Professor in the Dept of Informatics and Telecommunications, University of Athens 
2 Dr. Architect, National Technical University of Athens, Elected Assistant Professor in the Dept of Civil Engineering, Piraeus 
University of Applied Science  
perspect.geo@gmail.com 
3 Corrado De Concini, Claudio Procesi, Topics in Hyperplane Arrangements, Polytopes and Box-splines,  Springer, 2010, p.45  
4 W.W. Rouse Ball, H. S. M. Coxeter, Mathematical Recreations and Essays, New York: The Macmillan Company, pp. 141-144, 
1947 



Ioannis Z. Emiris & Nikos Kourniatis                                                                                                                     27 

 

 

Equilateral zonohedra are considered as 3 dimensional projections of n dimensional hypercubes5. 
The more symmetrised the initial vectors are, the more symmetrical the resulting zonohedra will be.  

Fig. 1 

 
Fig. 2 

 
Fig. 3 

 
Fig. 4 

 
 
The most symmetric zonohedra are those resulting from platonic solids6, with the vectors directed 

towards the linear segments, which project the vertices of each polyhedron from its centre. Thus, the cube 
and regular tetrahedron result in a rhombic dodecahedron (Fig. 1), the regular octahedron results in a cube 
(Fig. 2), the regular icosahedrons results in Kepler’s golden rhombic triacontahedron (Fig. 3), whose faces 
are rhombi with a diagonal ratio equal to the golden ratio Φ, and the regular dodecahedron results in 
rhombic enneacontahedron (Fig. 4), whose faces consist of two types of rhombi (60 of the one type and 
30 of the other). The above zonohedra constitute 3D models of hypercubes.7 
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Fig. 5 

  
 
Polar zonohedra form a unique category of zonohedra. Let us take a regular n gon in the plane and 

line segments ε1, ε2,..εν, which connect the centre O of the polygon to its vertices. Then let us take the 
equal vectors δ1, δ2,…δν, with O being the common starting point, which are projected in the plane of the 
n gon by ε1, ε2,…εν. The zonohedron resulting from the Minkowski sum of vectors δ1, δ2,…δν, which is 
called a polar zonohedron, is a convex polyhedron whose n fold axis is the vertical line in the centre of the 
plane of the polygon with n(n 1) rhomboid faces laid out in zones around the axis (Fig. 5). The algorithm 
in figure 6 allows us to create polar zonohedra by controlling the number of vectors, their inclination to 
the plane of each polygon and their size. This results in a variety of forms (Fig. 7). When several of the 
sides of a regular polygon are infinite, then the zonohedron leans towards a surface of revolution. It has 
been observed that 8 when the angle of inclination of the vectors to the plane of the polygon is 36.264°, 
the n polar zonohedron is considered a 3D orthographic isometric projection of the n hypercube.  

Fig. 6 

 
 

Fig. 7 

 
 

 
 
 
 

                                                             
8 Russell Towle, “Polar Zonohedra”, The Mathematica Journal, 1996, p.9 
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The description of the algorithm 
 
We will now provide a brief description of the function of the design algorithm, which has been 

designed to start off from a regular n gon and to result in zonohedra, which constitute Euclidean models 
of higher dimensional cubes, allowing for control of the inclination angle of the vectors to the horizontal 
plane, and also of the number of different directions that form the zonohedron each time. The algorithm 
in question was essentially used to plan the described procedure, which refers more to the geometric 
structure of the produced object, and not so much to its form. This approach to the designed object is 
detached from the architect’s conventional need to control form.  

 

1. Enter the initial data (polygon, edge size and height) into the design algorithm (Fig. 8) and control the 
desirable inclination angle of the vectors. Do not set the angle at 36.264° degrees from the start, which 
will result in orthographic isometric projections of hypercubes, so as to avoid limiting the variety of 
forms.  

2. Thereafter, by selecting the first three vectors, the initial rhombohedron (3D model of the 3 cube) will 
be constructed using the Minkowski sum. This rhombohedron will be reset by the algorithm whenever 
the initial data is modified.  

 

 
Fig. 8 
 

3. The zonohedron is constructed on the basis of the following rationale: When a vector is added, a series 
of new faces is added in the direction of this vector. The algorithm initially creates a section in the centre 
of the polyhedron, perpendicular to the new vector. It then provides a parallel projection of the apparent 
outline of the polyhedron, which occurs if the polyhedron is projected parallel to the new vector. This 
results in a spatial polygonal line, beyond which the new faces are placed each time (Fig. 9). 

 

   
Fig. 9 
 

4. Lastly, it divides the polyhedron into two sections based on this polygonal line and, once it sets and 
places the new faces, it reconnects the sections (Fig. 10).  
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Fig. 10 

 

 
Fig. 11 

 

 
 
A second algorithm has also been designed, which controls the gaps and overlaps that may exist in 

the spatial tessellations of n cube models. This algorithm allows a plane, which can occupy all the positions 
in space (Fig. 11), to intersect the spatial tessellation and remove the section thereof that is above and 
below this plane, so that the structure of the tessellation can be visible from each position of the 
intersecting plane. With regard to these planar sections, a third algorithm determines their distances and 
number, so that we may control how close the resulting sections are and thus draw conclusions on the 
variations in the tessellation, depending on the movement of the intersecting plane.  

 
The transition from smaller to larger dimensions 
 

Considering that the cube can create a spatial tessellation9, which – with the appropriate sections – 
can result in planar tessellations, we will explore the possibility of creating spatial structures and, by 
extension, planar tessellations from hypercubes by working with their three dimensional models.  

 
 
 

Fig. 12 
 

 
This exploration is also based on the fact that each n polar zonohedron and, consequently, each n 

hypercube can result from the composition of zonohedra10 of a lower order.  
                                                             
9 Gardner M., The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, 1984, pp. 183-184 
10 W.W. Rouse Ball, H. S. M. Coxeter, Mathematical Recreations and Essays, New York: The Macmillan Company, p. 147, 1947 
David Wells, The Penguin Dictionary of Curious and Interesting Geometry, p. 275 
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Thus, for example, the rhombic triacontahedron (which is a 3D model of the 6 cube) can result as 
follows: Let us take the parallelohedra defined by two triads of the six vectors that determine the rhombic 
triacontahedron. The combination of two oblong and two oblate parallelohedra (Fig. 12) results in a 
rhombic dodecahedron (3D model of the 4 cube) (Fig. 13). This, along with the use of six additional 
parallelohedra, results in a rhombic icosahedron (3D model of the 5 cube) (Fig. 14). The rhombic 
icosahedron combined with 10 parallelohedra, results in a rhombic triacontahedron (which is a 3D model 
of the 6 cube) (Fig. 15).  

Fig. 13 
 

 
 

Fig. 14      Fig. 15 
 

 
 

Spatial tessellation of 4 cube models 
 

Out of the zonohedra, the rhombic dodecahedron (3D model of the 4 cube) can create a spatial 
tessellation11, recurring in the direction of vectors δ1, δ2 and δ3 (Fig. 16). 

 
Fig. 16 

 
 

 
                                                                                                                                                                                                                
 
11 David Wells, The Penguin Dictionary of Curious and Interesting Geometry, p. 233 
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If we replace the rhombic dodecahedron with the 4 rhombohedra (3D models of the 3 cube) of 
which it is composed, we will get the same spatial structure, whose planar sections form periodic 
tessellations, as can be seen in figure 17.  

Fig. 17 
 

 

 
 

Spatial composition based on the 3D model of the 4 cube, while maintaining the rotational 
symmetry of the initial zonohedron 

 
As we have seen, the rhombic dodecahedron (3D model of the 4 cube) creates a recurring spatial 

tessellation; however its structure lacks rotational symmetry. If we take the rhombic dodecahedron 
resulting from the Minkowski sum, four of the six vectors of which the rhombic triacontahedron (3D 
model of the 6 cube) is composed, combined with the corresponding rhombohedra, will result in a spatial 
structure that maintains the six fold rotational symmetry of the rhombic triacontahedron and can create a 
spatial tessellation.  

Fig. 18     Fig. 19 
 

 

 
Fig. 20    Fig. 21 
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In particular, the rhombic dodecahedron with a six fold rotational repetition leads to the creation 
of a spatial pattern (Fig. 18), which – if supplemented by six rhombohedra symmetrically arranged in 
relation to the same centre – forms a slot (Fig. 19) that can be filled precisely by a rhombic 
triacontahedron (Fig. 20). Through translations by vectors ε1, ε2 and ε3, or through the appropriate 
rotations (Fig. 21), this spatial composition results in the spatial tessellation of the 3D models of the 4 
cube and 6 cube (Fig. 22). 

Fig. 22 

 
 
The planar sections of this spatial tessellation lead to tessellations that transform from regular to 

semi regular and eventually to interesting periodic tessellations. Figure 23 presents successive parallel 
sections of this spatial structure and the resulting tessellations, with a plane running parallel to the xy plane.  

Fig. 23 

 
Fig. 24 

 

 
 

The resulting patterns are even more interesting if the rhombic dodecahedra are replaced by the 
corresponding rhombohedra in various configurations (Fig. 24). Figure 25 presents planar tessellations 
resulting from the intersection of the spatial tessellation, parallel to the xy plane, while in figure 26 the 
sections are parallel to the xz plane. 

Fig. 25 
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Fig. 26 

 

 
 

Spatial composition based on the 3D model of the 8 cube, while maintaining the rotational 
symmetry of the initial zonohedron 

 
Following the same rationale as that in the previous cases, we apply the algorithm to first construct 

the polar zonohedron corresponding to the 8 cube, starting from a regular octagon and the resulting 
vectors, so that the zonohedron constitutes an orthographic isometric projection of the 8 cube. 
Subsequently, by combining the vectors in fours, we construct the rhombic dodecahedra that we will use 
to enclose the 8 cube. The rhombohedra will be constructed in the same way (Fig. 27).  

 
Fig. 27 

  
The construction of the basic pattern, which will – through parallel translations – result in the 

spatial tessellation, is presented in figure 31. We initially enclose the 8 cube, whose horizontal projection is 
a regular octagon, with eight rhombic dodecahedra (3D models of the 4 cube) having a square plan view, 
by creating 8 polar arrays (Fig. 28). The gaps that are formed can be filled – with the same central 
symmetry – by another 8 rhombic dodecahedra (in yellow) (Fig. 29) and, subsequently, by 8 rhombohedra 
(3D models of the 3 cube, in red) (Fig. 30). This configuration is repeated symmetrically in relation to the 
horizontal plane of symmetry of the zonohedron. Finally, groups of 8 rhombic dodecahedra (in blue) 
complete the pattern and create slots for the repetition of the construction (Fig. 43).  
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Fig. 28   Fig. 29     Fig. 30 
 

 
Fig. 31 

 

 
 
The spatial tessellation resulting from the translation of the pattern has the form presented in 

figure 32, in layers. Figure 33 presents planar sections of this spatial structure, parallel to the xy plane.  
 

Fig. 32 

 

 
 
 
 



36                                                                                 Journal of Engineering and Architecture, Vol. 5(1), June 2017 
 
 

Fig. 33 

 
 
Conclusion 
 

The process of constructing zonohedra and the tessellations that were presented lead to the 
conclusion that the polar zonohedra, which constitute Euclidean models of hypercubes in three 
dimensional space, can fill space and subsequently create planar tessellations, depending on the 
composition of the initial spatial pattern, which is repeated, thus filling the space. These tessellations can 
alternate from regular to semi regular and to periodic, depending on the position of the intersecting plane. 
The method followed shows architects an approach to the geometric structure of tessellation, which 
intertwines regular n gons with projections of solids in order to achieve the tessellation of a plane, in a way 
that they have never been associated before now. Table 1 below collectively presents the correlation 
between the zonohedron, the spatial pattern filling the space and the planar tessellations resulting from 
every such structure. 

Table 1 
Model of the 4 cube 

 

Spatial pattern 

 
Tessellations parallel to xy 

 

 
 

Model of the 8 cube 

 

Spatial pattern 

 
Tessellations parallel to xy 
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