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Abstract 
 
 

The integration of mesoscopic and microscopic simulation models provide expanded dimensions of 
modeling capabilities by taking the strengths of both model resolutions. Many transportation agencies, 
practitioners and researchers are beginning to see the advantages of using multiple levels of resolution 
when analyzing corridor specific problems. Mesoscopic models use dynamic traffic assignment to reroute 
traffic given various traffic conditions. Microscopic models are used to analyze traffic conditions at the 
individual car or lane level. Models are calibrated and validated using data collected in the field. Most 
practitioners validate their models to existing conditions and then forecast future conditions to predict 
traffic congestion. Once simulation runs are finished, results are presented to hosting transportation 
agencies and the project is completed. Very few practitioners collect future field data and compare it to 
the simulated forecasts. This sort of reverse model validation is referred to as back casting. This paper 
outlines the complete modeling process from model development, conversion, calibration, consistency, 
validation and ultimately - model back casting. A case study involving user class restrictions on Interstate 
10 in El Paso, Texas was used to analyze how accurate the models were at predicting future conditions. 
Researcher’s simulated truck restricted lanes on the freeway to determine how effective the user class 
restrictions were on overall traffic speeds and travel times. One year later when the truck lane restrictions 
were in place, field data was collected to determine how accurate the models were at predicting traffic 
conditions. 
 
 

Keywords: Backcasting, Multi-Resolution Modeling, Mesoscopic, Microscopic, Dynamic Traffic 
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1. Introduction 
 

Traffic analysts and operating agencies increasingly rely on traffic analysis tools to analyze and evaluate the 
current and future performance of transportation facilities for various modes of transport. There are a variety of 
software-based analytical procedures and methodologies developed by public agencies, research organizations, and 
private consultants that support different aspects of traffic and transportation analyses. These analyses usually rely 
on modeling software to assess the performance of transportation facilities.  
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These models are classified based upon their level of resolution and can be categorized as macroscopic, 
mesoscopic or microscopic. For long range planning projects, macroscopic tools analyze in a simplistic manner and 
at an aggregate level.  

 
However, this type of static representation of traffic fails to capture the intricate details of real-life 

conditions such as the fluctuation of traffic build-up and dissipation during peak-hour congestion periods and 
therefore cannot predict network performance temporally. Long-range planning models are geared for such 
applications because there is no need to analyze the interaction of vehicles at a more refined level. Microscopic 
simulation models in contrast describe the system entities and a high level of detail. The details of microscopic 
models yield the flexibility to add many more modeling contexts and options than mesoscopic and macroscopic 
models- but are limited in size and require an abundance of calibration parameters. Mesoscopic simulation and 
assignment models fill the gaps between the aggregate level approach of macroscopic models and the individual 
interactions of the microscopic ones. Mesoscopic models normally describe the traffic entities at a high level of 
detail, but their behavior and interactions are described at a lower level of detail[1]. 

 
Incorporating multiple-levels of resolution often includes the integration of model platforms. Model 

integration is fast becoming a simulation modeling approach since it takes both the localized and system-wide 
analyses into consideration. In the existing practice, these types of models are often used jointly in a traffic analysis; 
however, the actual practice and use of these models may vary widely among different analysts or regions. 
Practitioners often establish their standard practices through experience or at times the requirements from the 
transportation agency clients. On the other hand, transportation agencies may or may not establish the model use 
guidelines, and if they do, the standards often vary.  

 
Within the context of multi-level resolution comes the practice of model validation. Validation normally 

refers to authenticating model results to existing conditions. This is usually done using existing data collected in the 
field and trying to match simulated results with collected data. Hawas stated that the purpose of model validation is 
to ensure that the simulation model accurately represents the real world[2]. The Florida Department of 
Transportation (FDOT) initiated a study of best practices for model calibration and validation. FDOT described 
model validation as a procedure used to adjust models to simulate base year traffic counts and transit ridership 
figures for their travel demand models and that it consists of reasonableness and sensitivity checks beyond matching 
base year conditions [3]. 

 
While there is extensive literature on model validation as it relates to existing conditions, there are few 

studies that actually take field data from future years and validate how accurate the simulation models were. This is 
due in part to budgeting constraints. Project budgets are calculated based upon the amount of effort needed to 
perform a transportation study which typically included data collection, model development, calibration, validation 
and final analyses. This type of analysis can be considered a one directional process. Once model results have been 
obtained and presented to hosting transportation agencies, recommendations are given and usually implemented 
under normal circumstances. There are very few instances when data is collected after a project has been completed 
and compared to the forecasted results.  

 
For example, when a freeway corridor is experiencing heavy congestion near an interchange, simulation 

models are used to analyze future conditions and whether any roadway improvements (e.g., newly constructed direct 
connectors) will alleviate congestion levels. Once models are constructed, calibrated and validated, results are 
presented to the hosting agency where recommendations are given. If the hosting agency chooses to implement 
these recommendations and ultimately construct the project, the analyzer’s work is completed. There is rarely a 
study done afterwards to determine how accurate the simulation models were at predicting these future conditions. 
This type of after study is called back casting. Back casting is the opposite in forecasting in that it takes data 
collected in future years and compares it to simulated results presented in previous years. 
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The objective of this study was to perform a back casting analysis using a previously developed case study in 
El Paso, Texas where city council wanted to implement truck lane restrictions on Interstate 10 (I-10). The case study 
main objective was to develop a simulation based analysis to quantify the impact on vehicles speed with and without 
truck lane restrictions on I-10. In order to do so, the researchers collected field data which was used in the model 
development and calibration process.  

 
Once models were calibrated and validated, simulation results were obtained and presented to the Texas 

Department of Transportation (TxDOT). Shortly after simulation results were presented to TxDOT, the El Paso 
city council approved the ordinance and the user class restrictions went into effect. One year after these restrictions 
were in place, researchers went back and collected field data to determine how accurate the simulation models were 
at predicting the outcome of the truck lane restriction ordinance. The following sections outline the entire modeling 
process used in this study from initial model conversion, development, calibration and forecasting, to the final back 
casting analysis as shown in Figure 1. 

 

 
 

Figure 1: Model Development, Forecasting and back casting Process 
 
Research methodology 

 
Multi-Resolution Modeling 

 
Researchers used an innovative approach to analyze the effectiveness of user class restrictions. The multi-

resolution modeling (MRM) approach integrated macroscopic (TransCAD), mesoscopic (DynusT), and microscopic 
(VISSIM) simulation and assignment models. The metropolitan planning organization’s (MPO) regional travel 
demand model (TDM) in macroscopic format was initially converted to a DynusT model. Once fully calibrated, the 
mesoscopic model was run to user equilibrium (UE) conditions using the dynamic traffic assignment (DTA) 
algorithm embedded in the software. After the mesoscopic model has reached UE conditions, a sub-area of the 
freeway corridor (project limits) is extracted and converted to a microscopic counterpart. A conversion tool is used 
to transfer not only the physical network (e.g. links, nodes, zones) but also all time-dependent paths and flows to 
microscopic format. Additional microscopic base model calibration is needed including speed profiles, volumes, and 
vehicle compositions. If there are any modifications made to the microscopic model that would cause vehicles to 
update their paths to alternative routes (e.g. incorrect number of freeway lanes on a given section), then these 
changes must be reflected in the DynusT model and assignment must be run again. Once there are no additional 
changes needed, detailed analyses can be conducted and final recommendations provided. 
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Macroscopic to Mesoscopic 
 
The process begins with the conversion of the TDM to mesoscopic format. In addition, the regional model 

has an aggregated origin/destination (OD) matrix that is composed of all combined trip purposes. The 
origin/destination (OD) matrix is disaggregated where each corresponding trip purpose matrix is multiplied by 
corresponding hourly factor that is provided by the MPO as shown in Figure 2.  

 

 
 

Figure 2: Origin-Destination Matrix Development 
 

Once all trip purposes are multiplied by hourly factors, the matrices are summed which in turn provides a 
one-hour matrix with directionality in mesoscopic format. The process is repeated for all additional hourly factors in 
a 24-hour period. The formulation for matrix conversion is expressed as: 

 

φ δ 										∀	k ∈
푤ℎ푒푟푒: 

 
휑 	 = ℎ표푢푟푙푦	푓푎푐푡표푟	푓표푟	푡푖푚푒	푝푒푟푖표푑	푖	푤푖푡ℎ푖푛	푡푟푖푝	푝푢푟푝표푠푒	푗 

 

훿 	= 푚푎푡푟푖푥	푓표푟	푡푟푖푝	푝푢푟푝표푠푒	푗 
 

	푘		 = 푎푙푙	표푛푒	ℎ표푢푟	푡푖푚푒	푝푒푟푖표푑푠	푤푖푡ℎ푖푛	푎	24	ℎ표푢푟	푑푎푦 
 

	푗			 ∈ 	 {퐻퐵푊,퐻퐵푁푊,푁퐻퐵,푇푅푇푋,푁퐻퐵 − 푉,퐸푋퐿푂} 
 

 HBW = Home-based to work  
 

 HBNW = Home-based to non-work  
 

 NHB  = Non-home based  
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 TRTX  = Truck/taxi  
 

 NHB-V = Non-resident trips made by external local travelers  
 

 EXLO = External local  
 

 
Mesoscopic Calibration 

 
After the conversion process is completed, it is necessary to calibrate the mesoscopic traffic flow model 

with collected field data. The traffic simulation in DynusT is based on an anisotropic mesoscopic simulation (AMS) 
model, which is built upon the intuitive concept that at any time, a vehicle’s prevailing speed is affected only by 
vehicles in front of it; including those in the immediate adjacent lanes[4]. It is necessary to determine the maximum 
density (i.e. jam density) that sustains free-flow speed on freeway corridors. Green shield’s equation is used to 
calibrate the speed-density (v-k) relationship within the AMS model using field data. Several trial and error inputs for 
minimum speed, free flow speed and intercept speed were used to determine optimal jam density. The optimal jam 
density was ultimately determined by matching the corresponding observed v-k relationship to the calibrated as 
shown in Figure 3. 

 

 
 

Figure 3: Flow-Density relationship 
 

After all traffic models have been derived, it is necessary to calibrate the converted OD. It is calibrated 
based upon data collected in the field in the form of traffic counts (cars and trucks). The OD calibration process 
uses a linearized quadratic minimization problem developed by the University of Arizona where simulated link 
counts (volumes) are compared with real traffic data collected in the field. The program minimizes the deviation 
between simulated and actual screen line counts and updates OD pairs during each iteration until it reaches a 
predefined threshold[5].  

Figure 4 below depicts the OD calibration process. 
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Figure 4: OD Linear Minimization Optimization Process 
 
Once the mesoscopic model has been calibrated with collected field data, it is run to UE conditions using 

DTA. DTA is a time-dependent process that captures traveler’s route choice behavior as vehicles travel from origin 
to destination. The objective function known as dynamic user equilibrium (DUE) is based on the idea of drivers 
choosing their routes through the network according to a “generalized” travel cost which consists of monetary costs 
(tolls) and experienced travel time. The DUE process is an iterative process where travelers learn and adapt to the 
network conditions[6]. Part of the generalized cost calculation uses the value-of-time (VoT) to assess the time-
dependent shortest path when running traffic assignment. However, while VoT is a very important notion in 
simulation-based modeling, it is a latent theoretical constructed value that cannot be easily quantified[7].  

 
Therefore it is imperative that an accurate calculation of VoT be used as part of the generalized cost 

calculation- otherwise routing of vehicles can (especially for toll roads) can vary tremendously. For this study, the 
VoT was taken from the official travel demand model used for conformity purposes. Automobiles were assigned a 
VoT of $14.00 while freight (trucks) was given a higher value at $30.00.In addition, separate truck demand matrices 
were used to replicate realistic travel patterns for both modes of transportation; auto and freight. This was necessary 
to prevent unwarranted or unrealistic travel patterns of trucks (e.g. substantial amount of truck traffic on a university 
campus, central business district). 
 
Model Conversion 

 
Once the mesoscopic simulation model was run to DUE conditions, a sub-area cut of the I-10 corridor was 

performed within the mesoscopic model. All vestigial links, nodes and zones were removed, retaining only the I-10 
corridor, access ramps and direct connectors from adjoining freeways. Any vehicular paths and flows traveling 
through the project limits are truncated at the bounded area (i.e. sub-area cut) and those trips originating or 
terminating outside the I-10 corridor were removed. Once the sub-area process was completed, the remaining 
mesoscopic model is converted to a microscopic counterpart using a meso-micro conversion tool as show in Figure 
5. The tool converts over all links, nodes and most importantly –time dependent paths and flows within the 
bounded area. Once in microscopic format, there was additional cleanup and calibration conducted (e.g. geometry) 
before scenarios could be modeled. 
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Figure 5: Model conversion process 
 
Time-dependent paths and flows were transferred from the Dynus T model to VISSIM for the three 

different defined time-periods. It was necessary to convert the mesoscopic model to a microscopic counterpart 
because of the level of detail necessary for this analysis.  

Mesoscopic models cannot analyze the interactions of individual vehicles on separate lanes. Microscopic 
models are capable of this type of analysis but cannot replicate OD zones on a network of this size with any 
consistency. The VISSIM models then allows for a more “fine-grained” analysis of vehicle interactions at the 
localized level and ultimately determine whether or not truck restricted lanes benefit traffic congestion within the 
project limits. 

 
Microscopic Model Input 

 
Data was collected at strategic locations on I-10 and used as input for model calibration. A Global 

Positioning System (GPS) unit was used to determine altitudes for various segments of I-10. Altitude measurements 
were then used to determine grading along the freeway corridor. Input of grading in the microscopic model is 
necessary as if affects acceleration and deceleration patterns of all vehicles within the network. Each 
positive/negative percentage point adjusts the acceleration/deceleration of vehicles by 0.328 ft/s2[8]. Stations were 
determined by X-Y coordinates from Google maps© where high and low point segments of the freeway were 
determined from the GPS output. Due to the wide range of speed distributions along the freeway corridor, it was 
necessary to create multiple vehicle classifications for large commercial trucks. Previous research [9] was the guide in 
determining what types of trucks were typically found in Texas and what percentage of the truck traffic stream each 
comprised. The source of these data were the Tx DOT Automatic Traffic Recorder (ATR) Stations which record 
traffic volumes and classification on a year-round basis and provide permanent historical records of traffic 
conditions.  

 
Again, the research team used previous research on truck roadways in Texas to identify heavy vehicles 

properties and develop simulated counterparts in VISSIM[9]. Information contained in Table 1 was ultimately coded 
into VISSIM to create a representative Texas truck fleet. In any simulation where trucks are a part of the vehicle 
stream, those trucks are distributed according to the percentages shown and have the characteristics noted[10]. A 
vehicle composition was ultimately created to complete the coding necessary in VISSIM. The distribution of 
vehicles for the traffic composition varied between 9 and 12 percent, depending on the time period of simulation. 

 
 
 



Shelton, Valdez & Martin                                                                                                                                         59 
 
 

 

Table 1: Truck Characteristics Applied to Texas Truck Fleet 
 

Truck 
Class 

Relative 
Flow 

Length 
(ft) 

Width 
(ft) 

Weight (lb) Power (hp) 
Min. Max. Min. Max. 

5 0.004 27.89 8 15,000 46,000 220 260 
6 0.001 27.89 8 20,000 53,000 220 300 
7 0.000 30.94 8 25,000 52,000 250 300 
8 0.001 36.13 8 28,000 66,000 315 380 
9 0.042 60.22 8 30,000 80,000 380 480 
10 0.000 55.39 8 32,000 87,000 415 490 
11 0.002 70.69 8 35,000 92,000 440 500 
12 0.040 67.24 8 35,000 106,000 505 525 
13 0.000 92.35 8 35,000 120,000 570 580 

 
Microscopic Calibration 

 
A radar gun was used to determine the average speed profiles of large commercial trucks. The speed profile 

was calibrated from actual field data collection in terms of both traffic volumes and speeds on the freeway corridor. 
This was needed to calculate the queue lengths for freeway facilities based upon an assumed linear relationship 
between density and flow[11]. It was also necessary to perform a series of screen line counts to validate the entry 
volumes at specific freeway on-ramps as shown in Figure 6.  

 
A final visual inspection of the models was performed to identify any potential inconsistencies within the 

network. If any inconsistencies that occur during the conversion process (e.g. incorrect number of lanes on freeway 
corridor) that would cause vehicles to change their respective routes, then changes must be reflected in the DynusT 
model and DTA must be rerun. When the microscopic model is developed and calibrated to satisfaction, a series of 
detailed analyses are performed. A base model was used for comparative purposes where trucks were free to travel 
in all lanes. A second model was duplicated with trucks restricted from the left-most fast lane. Speeds and travel 
times were compared for each defined time period. 

 

 
 

Figure 6: Screen line count locations 
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Forecasted Analysis 

 
Morning Peak Hour (7-11 AM) 

 
The morning peak hour simulation model was run for 4-hours from 7-11 am. The model had 122 static 

routing decisions and 2144 routes created for both auto and trucks. Traffic volumes and routes were updated every 
15 minutes for the entire simulation period. Simulation outputs were calculated every 5 minutes and included 
average speed, acceleration/decelerations, and travel time for both the eastbound and westbound directions. Data 
collection points were determined based upon areas of recurring traffic congestion. Average speeds (mph) were 
collected for both the left and right lanes respectively as shown in Table 2. It must be noted that several random 
seeds were used and data output was averaged for all modeled scenarios. 

 
Table 2: Average Speed (7-11 am) 

 
 Left Lane Right Lane 
  Base (mph) Restricted (mph) Base (mph) Restricted (mph) 
Yarbrough (WB) 61.6 63.2 58.6 58.7 
Paisano (WB) 55.4 55.7 52.9 52.1 
Cotton (WB) 64.4 65.2 60.6 60.5 
Resler (EB) 61.8 62.5 58 57.5 
Sunland Park 62.2 63.2 60.4 60.3 

 
Simulation results showed increased speeds on the left lane on I-10 that ranged from 0.3 to 1.6 mph in most 

locations. Right lane speed decreased slightly after the restrictions with the Paisa no area experiencing the highest 
average speed decrease at -0.8 mph. Travel time was also calculated for both the east and west bound directions of I-
10. For vehicles traveling on I-10 eastbound, travel time was averaged from N. Mesa St (SH 20) to Schuster Ave 
(exit ramp18A) and N. Mesa St (SH 20) to N. Lee Trevino Dr (exit ramp 29). For vehicles traveling on I-10 
westbound, travel time was averaged from Lee Trevino Blvd to E. Missouri Ave (exit ramp 19B) and N. Lee 
Trevino Dr to Redd Rd (exit ramp 10). Travel times were almost identical for both the base and restricted scenarios 
in the east and westbound directions. 

 
Mid-day (11-3 PM) 

 
The mid-day simulation model was run for four hours from 11 am to 3 pm. Data collection was taken at 

various locations during the simulation. Results showed that average speeds increased at all locations during the mid-
day simulation with the exception of I-10 at Schuster Ave westbound where there was no improvement. I-10 at 
McRae eastbound showed the highest improvement in average speed with a +2.1 mph improvement over the base 
case model. I-10 at Yarbrough eastbound showed a +1.8 mph improvement, while I-10 at Resler eastbound showed 
a +1.3 mph improvement with trucks restricted from the left-most lanes.  

 
For the right lanes, there were both increased and decreased average speeds for various sections of the 

freeway. I-10 at Copia eastbound just upstream of the Juarez/US 54 direct connect showed the worst decline with 
an of -0.5 mph decline in average speed while I-10 at Paisa no eastbound showed the highest improvement on the 
right lane with an increase of +0.6 mph improvement. Table 3 below shows the average speeds for the mid-day 
scenarios for both the east and westbound directions on the left-most and right-most lanes of I-10. Travel times 
were almost identical for vehicles traveling from N. Mesa St eastbound to Schuster Ave with an average travel time 
of 6.4 minutes. From N. Mesa St to Lee Trevino Dr in the eastbound direction, average travel time increased slightly 
by approximately 24 seconds. For vehicles traveling westbound, the simulation results showed an increase in average 
travel times by approximately 12 seconds. Since speeds are averaged for all vehicles on the corridor and trucks are 
restricted from using the left-most fast lane, average travel times increased slightly.  
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In the eastbound direction, vehicles traveling from N. Mesa St to Lee Trevino Dr had an average 
improvement of 12 seconds while traveling in the westbound direction had a 6-12 second improvement in travel 
time on the freeway. 

 
Table 3: Average Speed (11-3 PM) 

 
 Left Lane Right Lane 
  Base (mph) Restricted (mph) Base (mph) Restricted (mph) 
Yarbrough (WB) 61.9 63.7 58.9 59.2 
Paisano (WB) 58.2 58.8 53.6 52.4 
Cotton (WB) 65.2 65.6 60.6 60.7 
Resler (EB) 62.8 64.1 59.3 59.4 
Sunland Park (EB) 63.0 63.8 60.7 60.5 

 
Afternoon Peak Hour (3-7 PM) 

 
The afternoon peak hour model was run for four hours from 3-7 pm. Again data was collected at key 

locations on the freeway. Results showed a variation of -0.4 mph decrease in average speed at McRae to +1.0 mph 
improvement at Paisa no in the westbound direction for the left-most lane. For the right lanes, Airways (eastbound) 
showed the largest improvement with +0.2 mph improvement in average speed for the right-most lane. However, I-
10 at Paisa no in the westbound direction had an adverse effect in average speed at -1.8 mph. This was due in large 
part to the number of vehicles that are merging onto the right lane to take the US 54/Juarez direct connect during 
the afternoon peak hours.  

 
Pass-through truck traffic traveling cannot use the left-most lane to bypass heavy congestion on the right 

side of the freeway and therefore contributes to the growing bottleneck location. Table 4 below depicts the average 
speeds on I-10 during the afternoon peak hours. Speeds were also averaged over all lanes for the same time periods. 

 
Table 4: Average Speed (3-7 pm) 

 
 Left Lane Right Lane 
  Base (mph) Restricted(mph) Base(mph) Restricted(mph) 
Copia (EB) 63.7 64.1 64.4 64.5 
Airways (EB) 64.4 64.6 60.6 60.8 
McRae (EB) 50.4 50.0 54.0 53.4 
Paisano (WB) 62.2 63.2 58.7 56.9 

 
Findings 

 
Simulation results showed that restricting trucks from using the left-most fast lane had an overall 

improvement of speeds by approximately 1-2 miles per hour in most locations. For morning peak hours, the highest 
increase in average speed on the left lane was +1.6 mph at Yarbrough Dr westbound. Restricting trucks had an 
adverse effect on average speeds on the right-most lane during morning rush hour with Paisa no Dr experiencing a 
decline on average speed by -0.8 mph. 

 
For mid-day results, McRae Blvd eastbound experienced the highest improvement in average speed on the 

left-most lane with an increase of +2.1 mph. Yarbrough Dr westbound experienced an improvement of +1.8 mph 
and Resler Dr eastbound experienced an improvement of +1.3 mph. The right-most lane during the mid-day 
periods had both increases and decreases in average speeds at various locations.  
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McRae Blvd eastbound and Yarbrough Dr westbound experienced an increase of +0.5 and +0.3 mph 
respectively while Paisa no Dr westbound experienced the highest decrease in average speed on the right lane at -1.2 
mph. Afternoon peak hour results showed that Paisa no Dr westbound experienced the highest improvement of 
average speeds on the left lane with an increase of +1.0 mph. However, the same section of freeway at Paisa no Dr 
westbound also showed a decrease in average speed on the right-most lane of -1.8 mph due to vehicles merging over 
to take the US 54/Juarez interchanges. 

 
Back casting 

 
Ten months after the user class restrictions were in place, researchers collected data again to determine how 

accurate the simulation forecasts were compared to current conditions. Data in the form of both speeds and travel 
times were collected at three key locations for both morning and afternoon peak hours as well as the mid-day off 
peak time period. Comparative results showed more variance during peak hours versus non-peak hours. This is 
indicative of the fact that during free flow conditions, it is much easier to forecast traffic congestion on freeway 
corridors.  

 
It must be noted that the greatest variation in speed and travel time comparison was at the Resler direct 

connector location. Screen line counts were not taken at this location – therefore it is speculated that the number of 
actual vehicles entering the freeway exceeded the simulated traffic enter volume. The figures below show 
comparative speed profiles at various locations in both the east and westbound directions for the morning, mid-day 
and afternoon peak periods. For the Lee Trevino morning peak, the eastbound direction analysis showed an almost 
identical profile between simulated and actual. In the westbound direction which is inbound towards the central 
business district (CBD), there was more variability between simulated and actual. The actual traffic conditions 
hovered around 20 mph while the simulated had an initial value at free flow speed before matching the existing 
conditions fairly well as shown in  

Figure 7. 
The mid-day time period was analyzed at the US 54 locations (corridor midpoint). In both the east and 

westbound directions, the comparative analyses were extremely accurate at predicting vehicle speeds as shown in  
Figure 8. The modeling effort was able to replicate the temporal speed patterns and speed variations with a 

high degree of accuracy. The afternoon peak periods at Resler were also consistent at predicting speed patterns in 
both directions ( 

Figure 9). 
 

  
 

Figure 7: Speed Profile Comparison – Morning Peak 
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Figure 8: Speed Profile Comparison – Mid-Day 
 

 
Figure 9: Speed Profile Comparison – Afternoon Peak 

 
 
Table 5 is the overall comparison of speeds at all locations and time periods. I-10 at Lee Trevino Dr had the 

highest degree of accuracy in terms of forecasted speeds on the freeway. During the morning peak hour in the 
westbound direction, the simulation model was able to forecast speeds within 2 mph. The simulation model was 
able to at predict speeds at the US 54 interchange to within3.5 mph during the morning peak period. Mid-day 
comparisons at this location had higher discrepancy but were still within 89% of predicted values.  

 
 

Table 5: forecasted vs actual Speed Comparison 
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AM Mid-day PM AM Mid-day PM AM Mid-day PM
Simulated 61.3 64.1 64.6 56.6 43.4 51.8 34.3 57.3 58.7
Field 61.8 62.1 61.0 61.4 49.0 58.2 20.1 65.0 63.9
Percent Error -0.8% 3.2% 5.9% -7.8% -11.4% -11.0% 70.6% -11.8% -8.1%

AM Mid-day PM AM Mid-day PM AM Mid-day PM
Simulated 23.8 56.0 61.5 62.6 57.3 54.1 53.3 63.2 62.8
Field 21.8 59.5 56.3 59.1 64.2 48.1 62.9 64.7 62.7
Percent Error 9.2% -5.9% 9.2% 5.9% -10.7% 12.5% -15.3% -2.3% 0.2%

Lee Trevino (EB)

Lee Trevino (WB) US 54 (WB) Resler (WB)

US 54 (EB) Resler (EB)
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Conclusions 

 
Back casting is a useful and meaningful way of determining the accuracy and validity of forecast model 

results. It can also be referred to as the last step in the validation process. Modelers can benefit from this 
methodology by understanding where and why inconsistencies between forecasted and actual results occur. For 
example, the case study showed that accurate screen line counts (data collection) are a vital part of the calibration 
process – especially at boundary locations where vehicles enter the network. This case study showed that accurate 
screen line counts, especially at the boundary locations, are necessary in predicting future traffic patterns, speeds, 
and travel times.  

 
A MRM approach was used to develop large scale microscopic models for operational planning purposes. 

However, it must be understood that initial paths and flows are transferred from the mesoscopic to the microscopic 
level – therefore much effort must be placed in both the initial calibration, but also the consistencies between 
resolution levels. For example, under-estimating traffic volumes at vehicle loading point locations in the regional 
mesoscopic model can have a major impact when determining speeds and travel times. It must be noted that this 
case study was performed for TxDOT with the explicit goal of determining whether speeds in the left most lane on 
I-10 would improve with the restriction of trucks. In order to conduct a more comprehensive back casting analysis, 
travel time comparisons between simulated and field data after restrictions are in place is recommended. 

 
In addition, the VoT used in the regional mesoscopic model has an impact on the overall routing 

assignment thus impacting travel patterns. While the OD was calibrated using data collected in the field, the VoT 
was held constant against other variables. Further research is needed to assess a more accurate depiction of the VoT 
for the El Paso region, particularly when assigning vehicles on tolled facilities. 
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