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Abstract 
 
 

Experimentation is critical for trade-off analysis during design and development, as well as test phases of 
model based or model and simulation based systems engineering, or use of simulation based designs. Latin 
hypercube designs are effective experimental schemes that can save time and resources. However, they 
can also have highly correlated columns that present problems during post simulation analysis. 
Experimenters need a means to know if the Latin hypercube design that they plan to generate has a 
tolerable amount of correlation within its columns. A known probability model greatly aids this need. 
Application of the Kolmogorov-Smirnov goodness-of-fit tests shows the appropriateness of the Type 1 
Gumbel distribution to model the smallest maximum absolute pair wise correlation from a set of random 
Latin hypercube experimental designs with equal dimensions (design points and factors). We estimate the 
Gumbel’s location and dispersion parameters using only information from the design environment. 
Results of this paper improve the scientist’s ability to plan better experiments for the specific study 
condition. 
 
 

Keywords: Design of Experiments; Latin Hypercube; Gumbel Minimum; Kolmogorov-Smirnov. 
 
1. Introduction 
 

Latin hyper cubes are widely used for high-dimensional computer experiments (Kleijnen 2008, Buyske and 
Trout 2001). As Gianni, D’Ambrogio, and Tolk (2015) indicate, practitioners of model-based systems engineering 
(MBSE) and model and simulation based systems engineering (MSBSE) are particularly interested in efficient, 
general-purpose designs for examining systems with a large number of factors corresponding to unknown response 
surfaces. Yet, the inherently high correlations that can exist in these designs make the ensuing analyses problematic.  

 
Efforts to reduce or eliminate correlations are often difficult, computationally expensive, and time 

consuming (Hernandez 2008, Cioppa 2002). Hernandez, Lucas, and Sanchez (2012) offer an alternative approach to 
reduce correlation via random Latin hypercube (RLH) generation. The results include a general expression 
(Equation 1) and policies for selecting appropriate design dimensions (design points – n and factors – k) to produce 
an RLH with an acceptable degree of correlation. A separate equation corresponds for each specific G (the number 
of RLHs with the same dimension from which to choose). However, G is not in the overall equation, thus limiting 
its utility. A defined probability model incorporating the variables n, k, and G becomes a powerful tool for planning 
better experiments.  
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, G = {10, 25, 50, 75, 100, 125, 150, 175, 200} (1)  
 
Shaping the design environment—D Env(n, k, G)—tofind an acceptable RLH requires a quantum measure. 

Equation 2 computes correlation between any two column vectors, 
iX and 

jX , for a given design X, where 
ix  is 

the mean value of column i. 
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Since the major concern is with the magnitude of the correlation and not its direction, we focus on the 

largest 2
k 
 
  absolute pair wise correlation values for a design with k factors. The maximum absolute value of pair 

wise correlations for any RLH is:  max | |,  ( )   map ij i j
. 

 

Consider any G number of RLHs with the same design dimensions (n, k). Each RLH has a specific map
, 

resulting in       , , ...,1 2  map map map G .The ordered set contains a 
map  that is less than all other values, 

     
(1) (2) ( )

s.t. ...    map map map G . We designate 
 min

(1)
 map map as our primary measure, and its 

corresponding RLH as the best from G designs. 
 

2. Data Farming RLH Designs—Analysis and Model Development 
 
2.1. Generating RLH Data 

 
Latin hypercube sampling treats input variables as random, but with known distribution functions. For each 

factor, j, is a related column in the design, 
jX , j = 1, …, k, where its value distribution is divided into “n strata of 

equal marginal probability 1/n.” Constructing the Latin hypercube is a matter of sampling each stratum once 
(McKay, Beckman, and Conover 1979). Patterson (1954) simplifies the process by using the median in each stratum 
to create a lattice of n design points; RLH generation basically corresponds to k independent permutations of the 
first n natural numbers. Producing hundreds of millions of RLHs becomes routine (Hernandez 2008). 

This study required creating over 200,000,000 RLHs to analyze their
min
map

 values for comparison with the 
Gumbel distribution. We identify 115 design dimensions (n and k, n>k) using dimensional conventions from Cioppa 
(2002) and combine them with nine G values (10 to 200) from Hernandez, et al. (2012), for a total of1035DEnvs. 
For any specified DEnv there are 1000 observations from which to develop statistics, such as the average value of

min min map map . Table 1shows 
min
map  for G = 200, i.e. for D Env (65, 7, 200), 

min 0.1483 map . 
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Table 1: DEnv (n, k, G = 200). Valid design dimensions are combinations of n, k;n>k. 
 

 
 

2.2. A Case for the Gumbel (minimum or min) Distribution  
 

First level analysis of any DEnv is revealing. For instance, the frequency histogram Figure 1 shows 1000 
min
map

 values generated from DEnv (17, 11,200) as a negatively skewed bell curve, which indicates a Gumbel (min) 
distribution (1958). Kotz and Nadarajah’s (2005) validate the empirical CDF (ECDF) in Figure 1 for this Type 1 
Gumbel distribution.  

 

 
 

Figure 1: Frequency histogram of 
min
map for DEnv(n = 17, k = 11, G = 200) shows a negatively skewed curve 

indicative of the Gumbel (min) distribution; also known as the log-Weibull. 
 

17 25 33 49 65 97 129 193 257 513 1025
7 0.3083 0.2463 0.2099 0.1727 0.1483 0.1214 0.1044 0.0851 0.0745 0.0521 0.0366

11 0.4163 0.3427 0.2936 0.2391 0.2065 0.1685 0.1468 0.1192 0.1035 0.0724 0.0511
16 0.4943 0.4027 0.3503 0.2864 0.2480 0.2029 0.1768 0.1436 0.1243 0.0875 0.0622
22 0.4508 0.3937 0.3216 0.2804 0.2299 0.1980 0.1612 0.1400 0.0991 0.0703
29 0.4271 0.3495 0.3041 0.2484 0.2159 0.1771 0.1529 0.1086 0.0768
37 0.3739 0.3264 0.2662 0.2309 0.1893 0.1630 0.1160 0.0821
46 0.3940 0.3417 0.2803 0.2438 0.1994 0.1726 0.1221 0.0866
56 0.3565 0.2927 0.2544 0.2083 0.1802 0.1279 0.0906
67 0.3037 0.2636 0.2158 0.1869 0.1329 0.0940
79 0.3129 0.2722 0.2232 0.1936 0.1371 0.0972
92 0.3220 0.2800 0.2295 0.1987 0.1409 0.0998

106 0.2862 0.2352 0.2037 0.1446 0.1024
121 0.2931 0.2399 0.2085 0.1477 0.1045
137 0.2448 0.2121 0.1505 0.1071
154 0.2493 0.2167 0.1532 0.1087
172 0.2533 0.2202 0.1561 0.1106
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The Gumbel (min) distribution has two parameters, α (location) and β (dispersion). Its probability density 
and cumulative distribution function (CDF) are in Equations 4 and 5, respectively(Gumbel 1958).For our case, the 

value, x, is the 
min
map

. 
 

1
( ) exp exp      - ;   > 0

 


  
 

     
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x x
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         (4) 
 

( ) 1 exp exp                  - ;   > 0
x

F x x






      
  

  
            (5) 

 
Al-Subh (2014) effectively applies the method of moments to estimate β (Equation 6) and α (Equation 7) 

from sample data when the number of observations is 1000 or less: 
 

6
̂


 A s

, where s is the sample standard deviation, and        (6) 
ˆˆ̂    A A , where ̂ is the sample mean and is Euler’s constant, 0.577216.(7) 

 
While we adopt the structure of Al-Subh’s formulas for parameter estimates, we recognize that they are 

directly dependent on empirical data. A method for estimating the Gumbel (min) parameters with only DEnv 
variables (n, k, G) is a much more useful and valuable prospect. The possibility to do so materializes from other 
DEnv graphs (Figure 2). They are similar to Figure 1, differing only in centrality and spread as n, k, and G vary.  

 

 

Figure 2: Frequency histograms of 1000 observations of 
min
map for different DEnv(n, k, G) show a change in 

location and dispersion parameters. 
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2.3. DEnv Based Estimate for the Dispersion Parameter 
 

Equation 6 depends on the sample deviation. We develop an expression for sample deviation in terms of 
DEnv(n, k, G) to estimate the dispersion parameters. The subscript H differentiates it from Al-Subh. 

 
6ˆ ˆ


 H s
, where ŝ  is the DEnv based estimate for the sample standard deviation.(8) 

Generating and examining millions of 
min
map

 we formulate a regression model for ŝ . Logarithmic (Log) 
transformations of dependent and independent variables confirm a linear relationship between Log (Stdev) and Log 
of k:n ratios for different G values. Log (n) and Log(k) are similarly related to Log (Stdev).Equation 9 estimates the 

Log (Stdev) for a sample of
min
map

 values. Computing 
( )ˆ 10 Log Stdevs completes Equation 8. 

 
0 1 2 3 4 5 6

7 8 9

( ) ( ) ( ) ( )

                      ( ) ( ) ( ) ( ) ( )

Log Stdev b b n b k b G b Log n b Log k b Log G

b kLog n b Log n Log k b Log k Log G

       

    (9) 
 
2.4. DEnv Based Estimate for the Location Parameter 

 
To develop an appropriate estimate for α, we combine work from Al-Subh (2014) with that of Hernandez, 

et al. (2012).  Al-Subh’s location parameter estimate relies on the sample mean, ̂ . We set
minˆ map 

 and develop a 

new expression to estimate 
min
map that contains G. 

Power transformations result in a strong linear relationship between transformed nand 
min
map .Equation 10is 

the new regression model for 
min
map , denotedas  min

E

map
. 

 

   min 1/2 1/4 1/4 1/2 1/4 1/2 1/4 1/4
0 1 2 3 4 5 6 7            

E

map b b n b k b n b k b G b n k b n k G               
(10) 

 

Replacing ̂ with  min
E

map
 in Equation 7 results in Equation 11, the DEnv based estimate for the location 

parameter. With 
ˆ

H , Equation 11 fully describes the DEnv based Gumbel (min). 

 min ˆˆ       
E

aH m p H
   (11) 

 
3. Goodness-of-Fit Test for the Gumbel (min) Distribution 
 

We test the goodness of the Gumbel (min) to model the 
min
map

 values for a given DEnv(n, k, G). K-S 
compares the ECDF of the collected data with the theoretical or assumed distribution from which the analyst 
believes the data comes. Bolarinwa and Alhassan (2013) find K-S superior for testing the fit of the Gumbel (min) 
distribution if there are 1000 or more observations. For our situation and purposes K-S is a fitting approach. 
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K-S tests the null hypothesis H0: 0( ) ( )F x F x  against Ha: 0( ) ( )F x F x , where 0( )F x is the theoretical 

distribution. The estimate for ( )F x is 
ˆ( )F x  from observed data. We use Al-Subh’s (2014) parameter estimates to 

establish the theoretical distribution for the Gumbel (min) distribution and designate it as ( )AF x . The test statistic 

for the hypothesis test is the largest difference between CDF and ECDF:D=
ˆmax ( ) ( )Ax
F x F x

. If H0 is true, 

then
ˆ ( ) ( )AE F x F x    , thereby producing a small D. The value D is compared with a critical constant, C, 

corresponding to a specified confidence coefficient, 0.05  . The choice of Csatisfies 

 0
ˆ ( ) ( )AP F x F x C H   

. Papoulis (1992) computes C based on choice of  : C =

1 ln
2 2m

  
 
  , where m 

is the number of observations. Failure to reject (FTR) the null hypothesis occurs if and only if D<C. 
 
Table 2 summarizes statistics and parameter estimates for DEnv(n = 129, k = 92, G = 75) based on1000 

observations of 
min
map

. Comparisons of Al-Subh’s parameter estimates (2014) and the DEnv based Gumbel (min), 
( )HF x , with statistics from the observed data demonstrate how consistent the DEnv based estimates are with the 

observed data, as well as Al-Subh’s parameters. 
 
Table 2: Statistics from 1000 observations based on DEnv (129, 92, 75) and related estimates. 
 

Statistics from Empirical Data: 1000 Observations of 
min
map

, DEnv(n = 129, k = 92, G = 75) 
Mean 0.284736 
Standard Deviation 0.005774 
    

Al-Subh Theoretical Estimates of Gumbel (min) Parameters, ( )AF x  

beta ( ̂A ) 0.004502 

alpha ( ̂A ) 0.287335 
    

DEnv Based Parameter Estimates for Gumbel (min), ( )HF x  

Estimated 
min
map  0.284343 

Estimated Standard Deviation 0.005857 

beta ( ̂H ) 0.004567 

alpha (̂H ) 0.286979 
 
Figure 5 visually compares the CDFs from Al-Subh and DEnv based Gumbel (min) distributions against 

the ECDF of the observed data for DEnv(n = 129, k = 92, G = 75). The chart reveals near identical curves, indicating that 
Al-Subh’s Gumbel (min) accurately describes the observed data. It further shows how the DEnv based Gumbel 
(min) directly maps onto the ECDF and Al-Subh’s theoretical distribution. 
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Figure 5: Comparison of ECDF with CDFs that result from Al-Subh and DEnv based parameter 

estimates. The data’s histogram shows the shape of the Gumbel (min).  
 
K-S tests for all three distributions are equally convincing. Binned samples in Figure 5 include thirty-two 

separate points of comparison between the ECDF and CDFs.  Table 3is an excerpt of these differences per binned, 
xp. The greatest deviation occurs at xp= 0.28419, thus D= 0.06391. 

 
Table 3: Test statistic for K-S test between ECDF and Al-Subh CDF, DEnv(n = 129, k = 92, G = 75). 

 
 xp 0.28081 0.28194 0.28306 0.28419 0.28532 0.28645 0.28758 
ˆ( )F x  0.22200 0.26200 0.38100 0.45600 0.51800 0.59700 0.66900 

( )AF x  0.20907 0.26022 0.32113 0.39209 0.47249 0.56041 0.65222 
ˆ ( ) ( )  AD F x F x  0.01293 0.00178 0.05987 0.06391 0.04551 0.03659 0.01678 

 
We compute the critical constant, C, that corresponds with the specified confidence coefficient,  , and 

number of observations, m = 1000. Based on the magnitude of the
min
map

 values and observed standard deviations, 
we choose the confidence coefficient, 0.0001  .The resultingCis0.07037; for any xp, a difference of more than 7% 
between CDF and ECDF rejects the null hypothesis. 

 
K-S tests for DEnv (129, 92, 75)are in Table 4. Column 2confirms that Al-Subh’s (2014) model for the Gumbel 

(min) distribution effectively describes the observed 
min
map

 values. The third column shows Al-Subh and the DEnv 
based Gumbel (min) are the same. Finally, column 4 verifies that there is no statistical difference between the DEnv 
based Gumbel (min) CDF and the ECDF. Columns 3 and 4 are the most critical for our purposes. With

( ) ( )H AF x F x , we further argue that ( )HF x is sufficient to describe the observed data. 
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Table 4: Summary of K-S tests for DEnv(129, 92, 75). 
 

Hypothesis Tests 0
ˆ: ( ) ( )
ˆ: ( ) ( )

A

a A

H F x F x

H F x F x



  

0 : ( ) ( )
: ( ) ( )

H A

a H A

H F x F x
H F x F x


  

0
ˆ: ( ) ( )
ˆ: ( ) ( )

H

a H

H F x F x

H F x F x



  
Test Statistic, D: 0.06391 0.02933 0.06385 
Critical Constant, C: 0.07037 0.07037 0.07037 
Test Result: D < C D < C D < C 
Hypothesis Test Conclusion: FTR H0 FTR H0 FTR H0 

 
4. Generalized Principles for Application 
 
4.1. Policies for Using Gumbel (min) Models with DEnv Based Parameter Estimates 

 
We prescribe the bounds for applying the DEnv(n, k, G) based Gumbel (min) model. Limit theory, past 

studies, and structure of the parameter estimates guide how to implement the model.  

There is very little variation in 
min
map

values beyond a given value of n.  Owen (1994) proves that any pair 

wise correlation, ij
, for a Latin hypercube, specifically a lattice Latin hypercube, has variance of (n – 1)-1. As n 

increases, variance in correlation values approach zero. Since regression assumes measurable variability in the chosen 

response variable, the regression model to estimate 
minmap is not suitable when n is very large. Large values of n also 

have consequences for Al-Subh’s (2014) dispersion parameter estimate. As the standard deviation of
min
map

 values 

approaches zero, the estimate for  also approaches zero and causes the Gumbel (min), as defined in Equations 4 
and 5,to be undetermined. The ratio of k and n, which indicates the saturation of the design, affects the utility of a 
regression model. The term, (1 – k/n), appears in the denominator of the variance estimator for the regression 
model (Wu 1986). As the design reaches full saturation, i.e.,k/n = 1, the errors in the regression model greatly 
increases, thereby decreasing its usefulness. 

 

Past studies inform the rule set in applying a DEnv based Gumbel (min) model for
min
map

. Hernandez (2008) 
shows that RLHs with k/nless than 0.33 are more likely to have acceptable correlation values. Al-Subh (2014) uses 
values of 100n  in his effort to develop parameter estimates. Bolarinwa and Alhassan (2013) commonly work with 

values ofn = 20 or 100. Conditions for using a DEnv based Gumbel (min) distribution to model
min
map

 values follow: 
 

 17 200n  ; 
0.20 0.40

k
n

 
; 

7 ( 10) 100    
  
    

k
n G

n . 
 
Within these bounds, the experimenter can select from a large number of DEnv combinations. We 

randomly draw twenty DEnvs that conform to the above criteria and apply K-S tests for null hypotheses: 

0
ˆ: ( ) ( ) AH F x F x , 0 : ( ) ( )H AH F x F x , 0

ˆ: ( ) ( ) HH F x F x . The data comes from generating 1000 observations of
min
map

 for each instance of the specified DEnv. If K-S tests on all null hypotheses result in FTR, then it is a complete 

success. A qualified success occurs if 0
ˆ: ( ) ( ) AH F x F x is rejected, but the remaining hypothesis tests are FTR. 

Every case, but one, resulted in complete success. The exception resulted in a qualified success. 
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4.2. Applying DEnv Rules to the Experimental Condition 
 
Consider an experimental condition to examine k = 20 factors. The analyst wishes to use an RLH design 

such that 0.25   and k/nless than 0.25, which leads to n = 80 design points and G = 23. Equations 8 through 11 
determine the parameter estimates for the DEnv based Gumbel (min): 

 

( )ˆ 10 = 0.01311Log Stdevs  ,  min 0.26291 
E

map ,

6ˆ ˆ 0.01023


  H s
, and 

 min 0.2688= 1ˆˆ  =     H

E

mapH . 
 

The experimenter computes the  min 0.25 0.133  mapP x
, a relatively low probability of creating the 

desired RLH. However, there is a greater than 80% chance of producing a RLH with correlation 0.275 or less under 

the same DEnv. If 0.275  is unacceptable, the analyst can change any of the DEnv variables (experimental 
conditions). Increasing n to 90 improves the likelihood of creating an RLH with correlation 0.25 or less to51% (See 
Fig. 6), while increasing G to 30 betters the chances to 65%. Figure 6 illustrates the corresponding ECDF from 1000 
RLH with design conditions n = 90, k = 20, G = 23, and presents Gumbel (min) CDFs for DEnv and Al-Subh 

estimates. Choosing DEnv (90, 20, 23), we generate an actual RLH design with 0.25  .  
 

 
 

Figure 6: Histogram, ECDF, and CDF for DEnv(90, 20, 23)and Al-Subh 
 
5. Conclusions 

The Gumbel (min) distribution is an appropriate model to describe the 
minmap values associated with RLH 

designs. Examining hundreds of millions of RLH and their 
minmap values, we follow Al-Subh’s (2014) structure, but 

create parameter estimates for the Gumbel (min) using only the values n, k, G.K-S tests establish that the DEnv 

based Gumbel (min) accurately describes
min
map

.   

min
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The ability to equate a known probability distribution to model the behavior of correlation values in RLH 
experimental designs is an important tool for scientists applying MBSE, MSBSE, or simulation based designs. 
Understanding the situations in which DEnv based Gumbel (min) are applicable help experimenters choose the 

values of n, k, and G that will produce an RLH design that has correlation less than or equal to a specified 
min
map

. 
The analyst can quickly determine the probability of generating a design with an acceptable degree of correlation 
from the DEnv condition before expending time and resources to develop the experimental plan.  

 
Efficient experimental designs applied in MSBSE provide great incentives. Such experiments are critical for 

identifying significant factors in system design and trade-off analysis. With the same scheme, early simulation of 
systems can improve development of better stressor scenarios for test and evaluation through post-war-game 
experimentation and analysis (Hernandez, McDonald, and Ouellet 2015). The Gumbel (min) model in this paper is 
applicable as a simple routine for any software that generates Latin hypercubes. Accordingly, we offer it to 
experimenters and scientists. 
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