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Abstract 
 
 

This paper suggests video processing methods for monitoring temporary structures 
to detect possible structural failures. The causes of failures are mainly related to 
human error, but the imposed loads of structural failures can also be caused by 
complicated events such as accumulated stress, deflection, wind, vibration, and 
lateral forces. However, there is a lack of interactive tools to detect complicated 
failures and thus address the safety of temporary structures promptly. This paper 
applies video analysis techniques to concrete shoring and outlines the primary 
characteristics of automated detection. Shoring failure seriously damages materials 
and equipment, as well as causing injury or even loss of life among construction 
crews or members of the public. The suggested approach applies video analysis to 
characterize the deformation of temporary structures in various failure situations 
and detect possible failures in early stages of deformation.  The method proceeds via 
two steps: 1) learning and 2) detection of the failure. The first step examines 
deformation characteristics extracted from video sequences of simulated failure 
situations. Here, a Hidden Markov Model (HMM) is used to learn and to draw an 
inference for a possible failure and its cause. The suggested method then 
incorporates this into comprehensive site inspections and supervision.  
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Introduction 
 

Construction is one of the most hazardous industries, and temporary 
structures feature largely in considerations of construction safety(Culver, 1996). Many 
temporary structures are erected and dismantled in the course of constructing a new 
building.  
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Temporary structures can be classified into two categories: 1) those that 

support permanent structures, such as shoring, cofferdams, and formwork; and 2) 
those that serve as platforms for construction workers, such as scaffolding and 
ladders. Shoring is a temporary structure that provides support for a permanent 
structure until it becomes self-supporting and can include steel or timber beams, 
girders, columns, piles and foundations. Proprietary equipment includes modular 
shoring frames, post shores, and horizontal shoring. Shoring is also known as 
falsework.Failures of shoring are usually serious and may lead to significant damage to 
materials or equipment, collapse, injury, or even loss of life.The various materials that 
used for temporary structures are often aged and deteriorate rapidly based on their 
repeated usage. The causes of failures are mainly related to human error, but the 
imposed loads of structural failures can also be caused by complicated events, 
accumulated stress, deflection, wind, vibration, and lateral forces.  

 
In this paper, we suggestthe application of video analysis techniques to 

examine the ripple effect of a 1989 bridge failure (Surdahl, Miller, & Glenn, 2010)to 
determine whether an automated method for discovering and detecting structural 
failures could address safety concerns related to the use of shoring.There may be a 
single causetriggering a failure or it may be a combination of several complicated 
events producing structural deficiencies that lead to the final collapse.However, 
failures due to complicated causesare seldom recognized before the dramatic event. 
Federal agencies provide regulations designed to prevent possible failures for 
temporary structures, and a certified inspector carries out routine inspections 
manually at regular intervals(Zhu, German, & Brilakis, 2010). However, virtually all of 
the existing standards were developed for permanent construction, and few 
specifically address the use of temporary structures in construction (Duntemann, 
1996). Inspection results are mainly based on the inspectors’ observations after avisual 
assessment (Zhu, et al., 2010). There is a lack of interactive tools to detect 
complicated failures and thus address issues related to the safety of temporary 
structures promptly. Video imaging may be a way to automatically identify and 
localize specific spatiotemporal patterns that signify structural deficiencies, such as 
buckling and fracture of shoring tower legs, before a collapse occurs(Ke, Sukthankar, 
& Hebert, 2007). 

 
This paper suggests an automated method for the detection of possible 

failures of temporary structures captured in images of specific regions of interestand 
applied to the learning of defects and training of a Hidden Markov Model (HMM).  
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By utilizing a video sequence, a time series of frames can be used to construct 
a histogram image to detect the structural deformation of materials with minimal 
human intervention. The proposed image processing methods offers a sophisticated 
way to support comprehensive site monitoring to enhance construction safety and 
shows promise for further applications on building sites beyond monitoring 
temporary structures.  
 
Background 
 
Learning from aU.S. Bridge Failure 

 
In 1989 the eastboundMaryland Route 198 Bridge over the Baltimore-

Washington Parkway suddenly collapsed. Bridges No. 2 and No. 4 passed in parallel 
over the parkway’s southbound lanes, as shown in Figure 1. Researchers inspected all 
elements for wear and corrosion, including experimental evaluations of individual 
temporary structures, in this case the tower shoring. It was concluded 
thatconstruction of shoring and other temporary works were the causes of the 
collapse. The report evaluated nine possible causes: severe ground vibrations, failure 
of stay-in-place deck forms, the concrete placement sequence, vehicle damage to 
shoring, movement of the shoring system from Bridge No. 2 to Bridge No. 4, failure 
of shoring foundation slabs, the use of hardwood blocking, dynamic loading by the 
concrete finishing machine, and shoring failure(Surdahl, et al., 2010). 

 

 
 

Figure 1: Collapse of Bridge No. 4 in 1989 
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In response to the collapse and to prevent future bridge failures, the Federal 

Highway Administration (FHWA) immediately launched an investigation, and other 
agencies joined the effort to learn as much as they could about the cause of the 
collapse (Surdahl, et al., 2010). Many codes, standards, and regulations provide 
guidance and ensure the safety of construction. Most standards for temporary 
structures are voluntary, however, and are generally produced by construction related 
organizations. For instance, many private industry groups and federal and state 
organizations, including the Scaffolding, Shoring, and Forming Institute (SSFI), 
Precast/Prestressed Concrete Institute (PCT), the Federal Highway Administration, 
American National Standard Institute (ANSI), and so on, have published manuals for 
temporary structures. 

 
In some cases, these voluntary standards have been adopted either in part or 

as a whole by regulatory agencies, thereby becoming mandatory standards, but design 
and construction considerations for temporary structures are usually left to individual 
engineering judgment (Duntemann, 1996).To reduce unexpected events in 
construction and enhance safety, a great deal of effort has gone into improving both 
practices and materials, but construction remainsone of the most hazardous industries 
(Culver, 1996).    
 
Types of Shoring and Possible Events 
 

Shoring can include steel or timber beams, girders, columns, piles and 
foundations, and any proprietary equipment including modular shoring frames, post 
shores, and horizontal shoring. Shoring is also known as falsework(Adminitration, 
1993).Currently various types of shoring are available to support imposed loads 
without excessive stress and deflection and these are generally classified in terms of 
two types of temporary structure: multistory work and high-clearance construction.In 
multistory work, an individual tube and a scaffolding type shoring are used to support 
freshly poured concrete, and a scaffolding type shoring is used for high-clearance 
construction. Scaffolding shoring is known as tower shoring. Both types of shoring 
are generally equipped with adjustable jacking tools with which to make vertical 
adjustments and provide appropriate load endurance. This generally takes the form of 
a screw leg and is utilized at both the top and bottom of the structure.  Fig. 2 shows 
two different types of tower shoring and screw jack.  
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The bridge collapse was attributed to nine possible causes, but several of these 
events could have been recognized prior to the collapse if the inspections of the 
physical condition had been performed frequently to monitor vehicle damage to the 
shoring, movement of the shoring system, failure of the shoring foundation slabs, and 
so on. The researchers found that the cross-bracing members between shoring tower 
legs had bowed out of plane, making them incapable of providing the bracing needed 
to support the shoring tower legs when the towers failed (Surdahl, et al., 2010), 
resulting in buckling and fracture of the shoring tower legs and, ultimately, failure.     

 

 
 

Figure 2: Typical Tower Shoring and Screw Jack 
 
Current Practice for Infrastructure Management and Hidden Markov Models 

 
In the aftermath of structural failures, researchers examine a number of 

elements to discover the primary causes of failure and the numerous secondary causes 
that have contributed to that failure. In response to a collapse, and to prevent future 
similar failures, codes, standards, and regulations are modified to provide better 
guidance and ensure the safety of structures. 
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 However, in spite of these continuing efforts a great number of structures 

such as buildings, bridges, and temporary structures continue to fail due to various 
causes, with the age of the failed structures ranging from one year, or even during the 
construction process itself, to 157 years (Wardhana & Hadipriono, 2003). 
 
Structural Health Monitoring 

 
Inspecting the structural health of a structure at regular intervals is an 

important part of efforts to monitor the condition of large structures such as tall 
buildings and bridges, enabling managers to promptly and quantitatively evaluate their 
deterioration and any damage that is incurred due to natural hazards and aging. The 
structural condition is oftentimes described in terms of structural characteristics, but 
the structures are large and consist of many members that make the assessment of 
structural condition difficult, inaccurate, and expensive.  

 
The current practice, visual inspection by a highly trained structural engineer, 

is expensive both in time andcost. For example, the biennial visual inspection of a 
major bridge such as the BrooklynBridge in New York is reported to take over 3 
months and costs upwards of $1 million(Nagayama & Spencer, 2007). 

 
Sensor technology has undergone a process of rapid development in recent 

years. SHM systems for the assessment and control of structures are now widely used 
to improve maintenance, increase public safety, and minimize the economic impact of 
an extreme event. SHM monitors the physical state of a structural system and 
provides the means for capturing structural response and assessing structural 
condition.  

 
Because civil structures such as buildings, bridges, and towers are typically 

large and very complex, an extensive network of sensors is required to accurately 
assess their structural condition. Most SHM systems are customizedforparticular 
structural elements and are therefore not easily scalable for real structures. SHM 
applications with wireless sensors have greatly reduced the high costs associated with 
the installation of wired sensors, but the type of wireless smart sensor network needed 
for applications such as SHM require complex programming, ranging from network 
functionality to algorithm implementation and must cope with critical issues such as 
synchronizing sensors and data loss. Most existing SHM methods employ modal 
analysis to obtain modalparameters such as natural frequencies, damping ratios, and 
mode shapes (Sohn, Czarnecki, & Farrar, 2000).  
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Regardless of whether the network is wired or wireless, installing contact-type 
sensors on structural elements inevitably leads to difficulties with issues such as 
maintenance, sensor hardware, data aggregation, time synchronization, limited 
computational capability, the provision of power to the devices, and cost.  

 
In order to address these problems, various vision-based SHM systems have 

been developedthat benefit from the recent rapid advances in computer technology 
and visualization(Fukuda, Feng, & Shinozuka, 2010). However, the current vision-
based systems for displacement measurement are each limited to a single location with 
a single image-capturing device. Therefore, it is difficult to gather data over sufficient 
sites to monitorlarge and complicated structures effectively.  
 
Hidden Markov Model 

 
Real-world processes generally produce servableoutputs that can be 

characterized as signals (Rabinar, 1989). Thesesignals can be classified into groups 
according to whether they are: 1) discrete orcontinuous in nature, 2) stationary or 
non-stationary, and3) pure or corrupted by other signal sources. A chronological 
sequence of video images can thus be converted to a signal representing the current 
condition of a structure as an observable output. Developing an algorithm that 
depicts a process from theseobservable outputs to construct a prototype model often 
worksextremely well in practice and makes it possible to createuseful practical systems 
capable of prediction,recognition, or identification in a very efficient manner (Rabinar, 
1989). A Hidden Markov Model (HMM) is a statistical MarkovModel that is applied 
to extract probabilistic parametersthat contribute to the final output from a mixture 
ofunobserved states and possible observations. Markovprocesses are often used in 
models for sequential decisionmaking when outcomes are uncertain (Puterman, 1994). 
In this case,utilizing a series ofstructural images for the period leading up to a failure 
event should provide evidence regarding possible causes for thestructuralchangesthat 
occur near failure,allowing us to simulate these processes, learn through conducting 
simulations,and develop a prototype model for afuture practical application of 
statistical image diagnosis. 

 
Real-world processes generally produce observable outputs that can be 

characterized as signals(Rabiner, 1989). These signals can be classified into groups 
that are 1) discrete or continuous in nature, 2) stationary or non-stationary, and 3) 
pure or corrupted by other signal sources. 
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 In this case, if the signals representing possible causes for the bridge 

collapseare good enough to produce observable outputs, we can simulate the sources, 
learn through simulations, and develop a prototype model for future 
applications.Developing an algorithm that depictsa process from the observable 
outputs to a prototype modeloften works extremely well in practice and makes it 
possible to create important practical systems capable of prediction, recognition, or 
identification in a very efficient manner (Rabiner, 1989).  

 
A Hidden Markov Model (HMM) is a statistical Markov Modelthat is applied 

to extract probabilistic parameters that contribute to the final output from a mixture 
of unobserved states and possible observations. Markov processes are often used in 
models for sequential decision making when outcomes are uncertain (Puterman, 
1994).  

  
Proposed Method  

 
This section briefly describes the proposed approach for detecting possible 

structural failures of temporary structures. More details are provided in later sections. 
Video sequences collected with high resolution video cameras are analyzed to detect 
early symptoms of structural failurescaused by various events, such as accumulated 
stress, deflection, wind, vibration, and lateral forces. These hazardous events tend to 
deform the materials used for shoring, and thus the ability to detect material 
deformation as early as possible plays a key role in efforts to prevent the disastrous 
collapse of a complete structure. The proposed approach consists of two steps: 1) 
learning and 2) failure detection. In the first step, deformation characteristics of the 
shoring materialsare extracted by analyzing video sequences of simulated failure 
situations, and then thesecharacteristics are converted into time-dependant signals to 
train a Hidden Markov Model (HMM). Later, video inputsare processed in the same 
manner and then fed into the HMM to draw inferences regarding a possible failure 
and its causes. The overall procedure used for training and detection is summarized in 
Figure 3, and details of each step are explained in the following subsections.  
 
Region of Interest and Edge Detection 

 
From the first video input frame, a user specifies regions of interest (ROI) 

that contain shoring materials, which makes video processing much simpler and easier 
than handling the entire frame to find objects of interest. 
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 Within the ROIs, simple image processing techniques such as edge 
detection[9] are applied to extract boundary shape information for the shoring 
materials and surrounding structures. The edge detection method, one of the 
fundamental image-based pre-processing procedures, identifies locations where 
intensity levels in the image change abruptly. Figure 4 depicts an input video frame 
alongside an image showing the regions of interest and shoring material detected. 
Note that the shoring materials and their surroundings are extracted as a form of edge 
image.  
 
Edge Image History  

 
The edge image, extracted in the previous section, provides structural 

information for the shoring materials and their surrounding structures, even though 
an explicit analysis has not yet been performed.  

 
As the goal of this task is to detect early symptoms of failure, it is necessary to 

utilize a video sequence made up of a time series of image frames from which to 
extract time-varying signals from a series of edge images. A popular technique to 
achieve this is to construct a histogram image, which is a weighted accumulation of 
edge images over time. Provided that the camera system is mounted on a sufficiently 
heavy and rigid body, the histogram image will track changes in the edges caused by 
only the structure deformation of materials, based on the thickness of the edges.  

 

 
 

Figure 3: Training and Detection Procedure 
 
For instance, if a shoring pole in Figure 4a is deformed by vertical stress, then 

the edge image corresponding to the deformed section will change and, accumulated 
over time, appear to thicken. It is thus straightforward to detect changes in the 
thickness of the edges by recording the edge histogram images and tracking any 
variation over time. 
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Figure 4:Example of Edge Detection. 
 

 (a) Input video Frameshowing the ROI. (b) Detected Edges Inside the ROI. 
 
Hidden Markov Model Training 

 

Once a suspected abnormality in the edge history image has been detected, its 
status is tracked using time synchronization. This status consists of location, 
thickness, center of mass, curvature of outlines, and so on. If an abnormality is 
confirmed, its features are then quantized and used to create a sequence of outcomes, 

 
O = O1O2O3O4…. Let S = {S1, S2, ∙∙∙∙, SN} a set of states, where N is the 

number of distinct states, representing a range from the initial (normal) condition to a 
near-collapse state. Defining qt as the state of HMM at instant for time t, A = {aij} as 
the state transition probability distribution and B = {bj(o)} as the observation symbol 
probability distribution, we can construct a Hidden Markov Model with initial state 
distribution . Here, aij denotes a transition probability from state Si to Sj; 

 
aij = P[qt+1 = Sj|qt = Si], 1i, jN   (1) 
 
andbj (o) is the probability of observing the symbol o in state Sj at instant t; 
 
bj (o) = P[o at t|qt = Sj], 1jN   (2) 
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If Ck is the kth type of failure, where k=1, 2, ∙∙∙, M, and M is the total number 
of causes of failure, then we simply denote HMM for Ck as, 

 
k = (A, B, ).    (3) 
 
For each failure event, CEIs are collected, the feature sequences of the 

abnormality extracted, and the parameters of HMM k estimated using the Baum-
Welch algorithm. The observation probability distribution is assumed to have a 
multivariate Gaussian distribution. HMM training denotes various factors by a matrix 
in order to quantize the complicated relationship between abnormal factors. 
 

Failure Detection  
 

Let O = O1O2O3… OT an observation sequence for a given time period 
t=1…T, where NT. Given the parameters for HMM per failure event, the 
probability of the given observation sequence can be calculated, which requires a 
summation over all possible state sequences. The probability of a state sequence 
leading to a failure is expressed by the state sequence Q = q1q2q3…qN = S1S2S3…SN. 
Then, the probability of the observation sequence given the state sequence Q and 
model k is given by, 

 
P(O|Q, k) = bq1(O1) bq2(O2)…bqN(ON)  (4) 
 
Since the probability of state sequence Q is given by,  
 
P(Q|, k) = k a12 a23…aN-1,N, = k,  (5) 
 
the joint probability of both the observation and state sequences occurring is 

given by, 
 
P(O, Q| k) = P(O|Q, k) P(Q|, k) 
= bq1(O1) bq2(O2)…bqN(ON)k. (6) 
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This allows us to compute the probability of a failure event occurring once a 

sequence of observation has been established and thus issue a warning, along with a 
failure probability. 

 
The observation sequence is constructed as each observation sample is fed 

into the HMM models. Each time a sample is obtained the probabilities for each 
HMM model are computed, allowing continuous monitoring of the structure in real 
time.  
 

Conclusion and Future Work 
 
This paper proposes an automated method for detecting possible failure 

events caused by accumulated stress, deflection, wind, vibration, and lateral forces, all 
of which are known to contribute to structural failures of temporary structures.  

 
Video image processing of a specific region of interest can be used in 

conjunction with an edge detection method to construct histogram images capable of 
recognizing changes due to structural deformation.Based on accumulated histograms 
of the images, abnormality characteristics can be used to train a Hidden Markov 
Model (HMM) to infer possible failures and their cause. Many construction 
companies already operate video surveillance systems at construction sites, but their 
use is generally limited to purposes such as construction updates, security, and 
monitoring and the protection of high value assets. Recentimage processing research 
and development in the area of automated maintenance and inspection in the 
construction industry hastended to focus on in-situ object recognition, but this study 
presents a novel approach togathering current information and applying it to predict 
and preventfuture disastrous events. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Younghan Jung                                                                                                                     61 
   
 

 

References 
 
Federal HighwayAdminitration, F. H. (1993). Guide Design Specificatons for Birdge 

Temporary Works (Vol. FHWA-RD-93-032). Washington D.C.: Federal Highway 
Adminitration.  

Culver, C. G. (1996). Construction Site Safety. In R. T. Ratay (Ed.), Handbook of Temporary 
Structures in Construction: Engineering, Standards, Designs, Practices & Procedures 
(Second Edition ed., pp. 3.1-3.11). Boston: McGraw-Hill.  

Duntemann, J. (1996). Codes, Standards, and Regulations. In R. T. Ratay (Ed.), Handbook of 
Temporary Structures in Construction: Engineering, Standards, Designs, Practices & 
Procedures (Second Edition ed., pp. 4.1-4.13). Boston: McGraw-Hill.  

Fukuda, Y., Feng, M. Q., & Shinozuka, M. (2010). Cost-effective vision-based system for 
monitoring dynamic response of civil engineering structures. Structural Control and 
Health Monitoring, 17, 918-936.   

Ke, Y., Sukthankar, R., & Hebert, M. (2007). Event Detection in Crowded Videos. Paper 
presented at the IEEE International Conference on Computer Vision.  

Nagayama, T., & Spencer, B. F. (2007). Structural Health Monitoring Using Smart Sensors 
(D. o. C. a. E. Engineering, Trans.): University of Illinois at Urbana-Champaign.  

Puterman, M. L. (1994). Markov Decision Processes - Discrete Stochastic Dynamic 
Programming. New York: John Wiley & Sons, Inc.  

Rabinar, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Applications in 
Speech Recognition. Proceedings of the IEEE, 77, 257-286.   

Sohn, H., Czarnecki, J. A., & Farrar, C. R. (2000). Structural Health Monitoring Unsing 
Statistical Process Control. ASCE - Journal of Structural Engineering, 126(11), 1356-1363  

Surdahl, R., Miller, D., & Glenn, V. (2010). The Positive Legacy of a Bridge Collapse. Public Roads, 73(5).   
Wardhana, K., & Hadipriono, F. C. (2003). Analysis of Recent Bridges Failures in the United 

States. Journal of Performance of Constructed Facilities, 17(3), 1444-1150.   
Zhu, Z., German, S., & Brilakis, I. (2010). Detection of Large-Scale Concrete Columns for 

Automated Bridge Inspection. Automation in Construction, 19, 1047-1055.  
 


